[R-lang] Re: comparisons in lmer
Andy Fugard
andyfugard@gmail.com
Sat Jan 15 15:59:37 PST 2011
On Wed, Jan 12, 2011 at 6:06 PM, Maureen Gillespie <
gillespie.maureen@gmail.com> wrote:
> What if you DO want to do a bunch of paired tests and your coding scheme
> isn't going to get at them all in one go? What is the best way of doing
> this? Run multiple models on subsets of the data, then adjust/correct for
> multiple comparisons?
You could use Tukey's all-pairwise comparisons via glht in the multcomp
package. For instance:
>
> require(languageR)
> require(multcomp)
>
>
> M1 = glmer(CaseMarking ~ WordOrder * AgeGroup +
+ AnimacyOfSubject + Text + (1|Speaker),
+ family = "binomial", data = warlpiri)
> M1
Generalized linear mixed model fit by the Laplace approximation
Formula: CaseMarking ~ WordOrder * AgeGroup + AnimacyOfSubject + Text +
(1 | Speaker)
Data: warlpiri
AIC BIC logLik deviance
296.2 327 -140.1 280.2
Random effects:
Groups Name Variance Std.Dev.
Speaker (Intercept) 0.46023 0.6784
Number of obs: 347, groups: Speaker, 27
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.7731 0.4659 -5.952 2.65e-09
***
WordOrdersubNotInitial 0.2731 0.5025 0.543 0.5868
AgeGroupchild 1.2059 0.4726 2.552 0.0107 *
AnimacyOfSubjectinanimate 0.6406 0.3822 1.676 0.0938 .
Texttextb 0.2887 0.4833 0.597 0.5503
Texttextc 0.7376 0.4237 1.741 0.0817 .
WordOrdersubNotInitial:AgeGroupchild -1.8233 0.7382 -2.470 0.0135 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation of Fixed Effects:
(Intr) WrdONI AgGrpc AnmcOS Txttxtb Txttxtc
WrdOrdrsbNI -0.341
AgeGropchld -0.594 0.371
AnmcyOfSbjc -0.031 -0.052 0.041
Texttextb -0.478 -0.040 -0.039 -0.137
Texttextc -0.568 -0.033 -0.009 -0.311 0.606
WrdOrdNI:AG 0.249 -0.674 -0.434 -0.069 0.053 0.026
>
> summary(glht(M1, linfct=mcp(Text="Tukey")))
Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: Tukey Contrasts
Fit: glmer(formula = CaseMarking ~ WordOrder * AgeGroup + AnimacyOfSubject +
Text + (1 | Speaker), data = warlpiri, family = "binomial")
Linear Hypotheses:
Estimate Std. Error z value Pr(>|z|)
textb - texta == 0 0.2887 0.4833 0.597 0.821
textc - texta == 0 0.7376 0.4237 1.741 0.188
textc - textb == 0 0.4490 0.4063 1.105 0.509
(Adjusted p values reported -- single-step method)
Cheers,
Andy
--
Dr Andy Fugard
http://www.andyfugard.info
-------------- next part --------------
An HTML attachment was scrubbed...
URL: http://mailman.ucsd.edu/pipermail/ling-r-lang-l/attachments/20110116/2ee4fd7b/attachment-0003.html
More information about the ling-r-lang-L
mailing list